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Abstract

Let A be an algebra and M be a left A-module. We say that a linear mapping
3: A —> M is an o- left derivation, if 5(AB)=§(A)a(B)+ a(A)5(B) for any
A, B € A. In this paper, we show that under certain conditions o - left Jordan

derivations on some Banach algebras are zero.
1. Introduction

Let H denotes a complex separable Hilbert space. Let X be a complex
Banach space and let B(X) be the set of all bounded linear maps from X

into itself.

A subspace lattice on X is a collection £ of closed subspaces of X with
(0), Xin £ and such that for every family {M, } of elements of £, both

NM, and VM, belong to £, where VM, denotes the closed linear span
of {M,}. For a subspace lattice £, alg £ denotes the algebra of all

operators on X that leave invariant each element of L.
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A subspace lattice £ on H is called a commutative subspace lattice

(CSL), if it consists of mutually commuting projections and alg £ is called

a CSL algebra. A totally ordered subspace lattice A is called a nest and
the associated algebra alg N is called a nest algebra. If £ is a completely

distributive commutative subspace lattice (CDCSL), then alg £ is called

a CDCSL algebra. It is obvious that a nest algebra is a CDCSL algebra.
Given a subspace lattice £ on X, put

Jr={KeL:K={0}and K_ = X},

where K_ =V{L e L: K_<L}. Call £L a J-subspace lattice on X, if it
satisfies the following conditions:

@ Via:aeJL)=1,

(1) Ada_ :a e J(L)} =0,

(i) a Aa_ = 0 for every a € J(L),

(iv) aVa_ =1 forevery a € J(L).

If £ is a J-subspace lattice, then alg £ is called a 7 -SL algebra.

For x e X and fe X", the operator y — f(y)x is denoted by
(x®f)y = f(y)x. F(L£) stands for the algebra of all finite rank operators
in alg L.

For notation, we use lower case letters to represent elements of rings

and algebras in the abstract setting, and capital letters to represent
elements of subalgebras of Hilbert space operators.

Let o be a surjective homomorphism on A. A linear mapping 8 from
an algebra A to a left module M is called an «-left Jordan derivation

forall A e A, 5(A%) = 25(A)a(A).

In Section 2, we prove that for a right separating set I of M, where
M is a left A-module and I is contained in the subalgebra of A
generated by its idempotents, and for a surjective homomorphism a, if &

is an o.-left Jordan derivation from A into M, then § = 0.
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In Section 3, we give a result concern with a functional equation.
The following lemmas will be used repeatedly.

Lemma 1.1 [6, Lemma 3.1]. Let £ be a J-subspace lattice on X.

Then, the rank one operator x ® f € alg L, if and only if there exists a

subspace K € J(L) suchthat x € K and f € K*.

Lemma 1.2 [3, Lemma 2.10]. Suppose that L is a J-subspace lattice
on X. Then, every rank one operator in alg L is contained in the linear

span of the idempotents in F(L).
2. o - Left Jordan Derivations

In this section, we assume that A is a unital algebra and M is any
unital left A-module.

Lemma 2.1. Let o be a surjective homomorphism on A. Let
§: A — M bean a-Jordan left derivation. Then,

(i) 5(AB + BA) = 2a(A)3(B) + 2a(B)5(A);
(i) 5(ABA) = a(A%)3(B) + 3a(AB)3(A) — a(BA)S(A).
Proof. For any A, Bin A,
(i) 3(AB + BA) = 5(AB) + 5(BA)
= a(A)3(B) + a(B)5(A) + a(B)3(A) + a(A)3(B)

= 20(A)3(B) + 2a(B)3(A).
(i) 5(ABA) = %[S(A(AB + BA)+ (AB + BA)A) - 3(A?B + BA?)]

[20(A)5(AB + BA) + 20(AB + BA)5(A)

Do |

- 20(A%)8(B) - 20(B)3(A?)]
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[20(A) (20(4)5(B) + 2a(B)3(A)) + 20(AB)3(A)

po|

+ 20(BA)3(A) - 20( A%)5(B) - 4a(B)a(A)5(A2)]
_ %[4a(A2 )8(B) + 4a(AB)3(A) + 20(AB)5(A)

— 2a(A2)8(B) - 40(BA)5(A2)]
= 5 [20(A?)8(B) + 6a(AB)3(4) - 2(BA)3(A)]

= o(A2)5(B) + 3a(AB)5(A) — a(BA)3(A).

Lemma 2.2. Let o be a surjective homomorphism on A. Let
8: A > M be an a-left Jordan derivation. Then, for any A € A and

any idempotent P e A,
@ 8(P) = 0;
(ii) 8(PA) = 8(AP) = a(P)5(A).
Proof. (i) For any idempotent Pin A, §(P) = §(P?) = 2a(P)5(P). So,
a(P)5(P) = 20(P?)5(P) = 20(P)3(P). We have that a(P)3(P) = 0. Thus
3(P) = 2a(P)3(P) = 0. (1)
(ii) By Lemma 2.1 and (1), forany A € A, P = P2 € A,
3(AP + PAP) = 5(APP + PAP) = 2a(P)3(AP),
3(AP + PAP) = 5(AP) + 5(PAP) = §(AP) + a(P)3(A).
So
20(P)3(AP) = a(P)5(A) + 5(AP).
Thus,

a(P)3(AP) = a(P)3(A).
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We have that
3(AP) = a(P)5(A). 2
Since §(AP + PA) = 2a(A)3(P) + 20(P)3(A) = 2a(P)5(A), by (2),
3(PA) = 20(P)3(A) — 8(AP) = a(P)3(A). 6))
By (2) and (3), §(AP) = §(PA) = o(P)8(A). By induction, it is easy to
show the following result.

Lemma 2.3. Let o be a surjective homomorphism on A. If § is an

o - left Jordan derivation from A into M, then for any idempotents P,

Py, ...,P,in AandanyAin A,
8(P,...P,A)=8(AP,...P,) = (P, ... P,)8(A) = a(P,)...a(P, )3 (A).

We call a right ideal Z of A a right separating set of M, if for any m in
M, Im = 0 implies m = 0.

Theorem 2.4. Let T be a right separating set of M. Suppose that T
is contained in the subalgebra of A generated by its idempotents. Let o
be a surjective homomorphism on A. If 8 is an o - left Jordan derivation
from A into M, then & = 0. In particular, if 8 is an o - left derivation

from A into M, then & = 0.
Proof. By Lemma 2.3, forany S € 7 and any A € A,
5(AS) = 8(SA) = a(S)3(A). 4)

Since 7 1is a right ideal, TA € Z for any T € 7, A € A. Thus, for any
Ae A, T eI, by Lemma 2.231) and (4),

a(T)3(A) = 5(TA) = a(TA)3(I) = 0. ®)

Since 7 is a right separating set, it follows from (5) that, §(A) = 0 for
any A € A.
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Let A be an ultraweakly closed subalgebra of B(H). The Banach
space M is said to be a dual normal Banach left A-module, if M is a

Banach left A-module, M is a dual space, and for any m € M, the map

. * .
A>sa — am is ultraweak to weak™ continuous.

Corollary 2.5. If £ is a CDCSL on H. Let o be a surjective

homomorphism on alg L and & is an ao-left Jordan derivation from
alg £ into a dual normal unital Banach left alg L-module M, then
8 = 0. In particular, every o-left Jordan derivation from alg L into

itself is equal to zero.

Proof. Let 7 =span{T : T € alg £, rank T =1}. Then Z is an
ideal of alg £. By [3, Lemma 2.3], Z 1is contained in the linear span of
the idempotents in alg £. By [5, Theorem 3], we have that Z is a right
separating set M. Hence, it follows from Theorem 2.4 that & = 0.

Corollary 2.6. Let L be a J-subspace lattice on X. Let o be a
surjective homomorphism on alg L. If 8 is an o - left Jordan derivation

from alg L into itself, then & = 0.

Proof. Let Z =span{T : T e alg £, rank T'=1}. Then Z 1is an
ideal of alg £. By Lemma 1.2, Z is contained in the linear span of the
idempotents in alg £. By [5, Lemma 2.3], Z is a right separating set of
alg L. Hence, it follows from Theorem 2.4 that 5 = 0.

Corollary 2.7. Suppose A is a unital Banach subalgebra of B(X)

such that A contains {xo ® f, f € X"}, where 0 # x5 € X. Let o be a
surjective homomorphism on A. If 8: A — B(X) is an o -left Jordan

derivation, then 8 = 0.

Proof. Let Z = {x) ® f, f € X"}. Then Z isa right ideal of A and a
right separating set of B(X). For any xy ® f in A, if f(xy) # 0, then
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on ® f is an idempotent in Z. If f(xy) = 0, choose fi(xg) =1, we

f(xo)
have that x0®f=%x0®(f+f1)—%x0®(f1 —f), both xo ® (f + f,)

0.

and xg ® (f; — f) are idempotents. By Theorem 2.4, we have &

Let A be a weakly closed subalgebra of B(H). If K is a complex
separable Hilbert space, then the tensor product A ® B(K) is defined as

the weak operator closure of the span of all elementary tensors A ® B
acting on H ® K, where Ae A and B e B(H). A weakly closed

subalgebra A of B(H) is said to be infinite multiplicity, if A ® B(K) is
isomorphic to A.

Proposition 2.8. Let A be a weakly closed unital subalgebra of
B(H) of infinite multiplicity. Let o be a surjective homomorphism on A.
If 8 is an o-left Jordan derivation from A into a left A-module M,
then & = 0.

Proof. By [8, Theorem 4.3], every A e A 1s a sum of eight
idempotents in A. Thus, it follows from Lemma 2.2 that 5(A) = 0.

Proposition 2.9. Let £ be a J-subspace lattice on X. Let o be a
surjective homomorphism on F(L). If & is a linear mapping from F(L)
into an algebra B such that §(P) = 0 for any idempotent P € F(L), then
5 =0.

Proof. For any A, B € F(L), by [7, Proposition 3.2], we have that
A=A +Ay+..+A4,, where A; = x; ® f; are rank one operators in
alg £. It follows from Lemmas 1.1 and 2.2 that §(4;)=0,i=1, 2,
..., n. Thus, 8(A) = 0 for any A € F(L).

Corollary 2.10. Let £ be a J-subspace laitice on X. Let o be a
surjective homomorphism. If § is an o- left Jordan derivation from F(L)

into a left alg L-module M, then & = 0.
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Proposition 2.11. Let £ be a CSL on H. Let o be a surjective

homomorphism on alg L. If § is a bounded o.-left Jordan derivation

from alg L into B(H), then § = 0.

Proof. By Lemma 2.2(ii), for any P = P? e alg £ and A e alg L,
5(PA) = 5(PPA) = o(P)3(PA).

By [4, Theorem 2.20], §(A) = a(A)S(I), for any A € alg £. It follows
from Lemma 1.2(i) that §(I) = 0. Thus, §(A) = 0 for any A < alg L.

Let M be a Banach left A-module. A linear mapping D from A into
M 1is an approximately local left derivation, if for each a in A, there is a
sequence of left derivations {D, ,} from A into M such that
lim, ,, D, ,(a) = D(a). If in addition, D is bounded, then we say that D

is a bounded approximately local derivation.

Let A be a Banach algebra and let 7 be the subalgebra of A
generated by the idempotents in A. We say that A is topologically

generated by idempotents, if Z is dense in A.

Proposition 2.12. Let A be a Banach algebra topologically
generated by idempotents. Let o be a surjective homomorphism on A.

Then, every bounded approximately local o-left derivation from A into

Banach left A- module M is zero.

Proof. For any idempotents ey, ..., e, in A, there is a sequence of
a - left derivations {D,,} from A into M such that lim,_,, D, (e;...e,,)
= D(e; ... e,, ). Since every a-left derivation is a-left Jordan derivation,
it follows from Lemma 2.2@) and (5) that D,(e;...e,) =
a(ej ... ey,_1)D,(e,,) = 0. Thus, D(e; ...e, ) = 0 for any idempotents
€1, eg, ..., e, in A. Since A is generated by idempotents and D is
bounded, we have that D = 0.

By the ideas in [2], we study the following functional equations by
using Theorem 2.4.
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Theorem 2.13. Let A be a unital Banach algebra and M be a unital
left A -module. Let o. be a surjective homomorphism on A. Suppose that
T is a right separating set of M and T is contained in the subalgebra of
A generated by idempotents. Let f, g : A — M be linear mappings. If

f(A) = a(A®)g(A™), ®)

holds for any invertible element A in A, then the following statements
hold:

() f(A) = g(A) forall A e A;
(i) f(4) = a(A)f(I) forall A € A.
Proof. (1) By (6), we have that
g(A) = a(g®)f(Aa™). (1)

Let D = f — g. It follows from (6) and (7) that D(A) = —a(A%)D (A7})
holds for any invertible element A € A. Then D(I) = 0. In the following,
we prove that D is an o-left Jordan derivation. Since D is linear, we only

need to show that
D(A?) = 2a(A)D(A), ®)

for any A € A. Let A € A be arbitrary. Choose an integer n such that
B! and (I - B)'! exist, where B = nI + A. Thus, we have B2 = B -

(B' +(I - B)')L. Then,

D(B*) = D(B)- D(B! +(I-B)")™)
=DB)-a(B'+(I-B))Y2DB ' +(I-B)1)
= D(B)-a((I - B?B%*B~2)D(B) - a(B>(I - B*(I - B)?)D(I - B)

- D(B) - o(I - B2D(B) + a(B2)D(B) = 2(B)D(B).
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Hence D(B?)=2a(B)D(B), which implies (8) since D(I) = 0. Thus D is
an a-left Jordan derivation from A into M. By Theorem 2.4, it follows
that D = 0. Hence f(A) = g(A) for any A € A. The relation (6) can be

written in the form

f(A) = a(A%)f(AT). ©)

(i1) Let us first assume that f(I) = 0. We want to show that f = 0.

For any A € A and let us again choose an integer n such that B™*

and (I - B)_1 exist, where B = nI + A. By (9), we have
f(B) = a(B*)f(B™") = a(B*)f(B™\(I - B))

a(B2(B™M(I - B)?)f((I - B 'B)

a((I - BP)((I-B)y " -1)

a((I - B*((I - B) " )*)f(I - B) = —f(B). (10)

Hence f(B) = 0. Thus, f(A) = 0 for any A € A.

Now, we assume that f(I)= 0. Let h(A) = f(A)- a(A)f(I). It is
obvious that A is linear. A routine calculation shows that h(A) = a
(A%)h(A7Y) holds for any invertible operator A e A. Since h(I) = 0, we
have h(A) = 0 for any A € A. Thus, f(A) = a(A)f(I) for any A € A.

Corollary 2.14. Let £ be a CDCSL or J-subspace lattice on H and
let f,g:alg L — alg L be linear mappings. Let o be a surjective
homomorphism. Suppose that f(A)= o(A%)g(A™') holds for any
invertible element A in A. Then, the followings statements hold:

(1) f(A) = g(A) forall A e alg L;

(1) f(A) = a(A)f(I) forall A € alg L.

Similar to the proof of Theorem 2.13, by Proposition 2.11, we can get
the following theorem.
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Theorem 2.15. Let £ bea CSL on Hand let f, g : alg L — B(H) be
bounded linear mappings. Let o. be a surjective homomorphism. Suppose
that f(A) = a(A%)g(A™!) holds for any invertible element A in A. Then,

the followings statements hold.:
(1) f(A) = g(A) forall A e alg L;

(1) f(A) = a(A)f(I) forall A € alg L.
3. Left Jordan Derivations

The following is a result concerning a functional equation.

Theorem 3.1. Let A be a unital Banach algebra. Suppose that

f: A — A isa linear mapping such that f is a left Jordan derivation on

A. Then, f(x) = —x2f(x7') for all invertible elements x < A.

Proof. Suppose x € A, we have thus
S((x+x 1)) =2x +x1)d(x +x71)

215 (x) + 25 (x 1) + 22718 (x) + 245 (x 1), (11)

§((x + a7t )2) = éi(ac2 x4 2xx 1)

E‘)(x2 )+ é’)(x_2 )+ 28(xx_1 )
= 2(x)8(x) + 2x 15 (x 1) + 28 (xx1). (12)

From (11) and (12), 28(xx') = 2x718(x)+ 2x3(x~1). Since &(I) =0,
0 =2x18(x) + 2x5(x 1), 0 = x715(x) + x3(x ). Thus 5(x) = —x25(x1).
This completes the proof.
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